Serveur d'exploration sur les chloroplastes dans l'oxydoréduction chez les plantes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Redox Regulation of Starch Metabolism.

Identifieur interne : 000218 ( Main/Exploration ); précédent : 000217; suivant : 000219

Redox Regulation of Starch Metabolism.

Auteurs : Katsiaryna Skryhan [Danemark] ; Libero Gurrieri [Italie] ; Francesca Sparla [Italie] ; Paolo Trost [Italie] ; Andreas Blennow [Danemark]

Source :

RBID : pubmed:30298078

Abstract

Metabolism of starch is a major biological integrator of plant growth supporting nocturnal energy dynamics by transitory starch degradation as well as periods of dormancy, re-growth, and reproduction by utilization of storage starch. Especially, the extraordinarily well-tuned and coordinated rate of transient starch biosynthesis and degradation suggests the presence of very sophisticated regulatory mechanisms. Together with the circadian clock, land plants (being autotrophic and sessile organisms) need to monitor, sense, and recognize the photosynthetic rate, soil mineral availability as well as various abiotic and biotic stress factors. Currently it is widely accepted that post-translational modifications are the main way by which the diel periodic activity of enzymes of transient starch metabolism are regulated. Among these mechanisms, thiol-based redox regulation is suggested to be of fundamental importance and in chloroplasts, thioredoxins (Trx) are tightly linked up to photosynthesis and mediate light/dark regulation of metabolism. Also, light independent NADP-thioredoxin reductase C (NTRC) plays a major role in reactive oxygen species scavenging. Moreover, Trx and NTRC systems are interconnected at several levels and strongly influence each other. Most enzymes involved in starch metabolism are demonstrated to be redox-sensitive in vitro. However, to what extent their redox sensitivity is physiologically relevant in synchronizing starch metabolism with photosynthesis, heterotrophic energy demands, and oxidative protection is still unclear. For example, many hydrolases are activated under reducing (light) conditions and the strict separation between light and dark metabolic pathways is now challenged by data suggesting degradation of starch during the light period.

DOI: 10.3389/fpls.2018.01344
PubMed: 30298078
PubMed Central: PMC6160744


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Redox Regulation of Starch Metabolism.</title>
<author>
<name sortKey="Skryhan, Katsiaryna" sort="Skryhan, Katsiaryna" uniqKey="Skryhan K" first="Katsiaryna" last="Skryhan">Katsiaryna Skryhan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark.</nlm:affiliation>
<country xml:lang="fr">Danemark</country>
<wicri:regionArea>Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg</wicri:regionArea>
<wicri:noRegion>Frederiksberg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gurrieri, Libero" sort="Gurrieri, Libero" uniqKey="Gurrieri L" first="Libero" last="Gurrieri">Libero Gurrieri</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Pharmacy and Biotechnology - FaBiT, University of Bologna, Bologna, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Pharmacy and Biotechnology - FaBiT, University of Bologna, Bologna</wicri:regionArea>
<wicri:noRegion>Bologna</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sparla, Francesca" sort="Sparla, Francesca" uniqKey="Sparla F" first="Francesca" last="Sparla">Francesca Sparla</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Pharmacy and Biotechnology - FaBiT, University of Bologna, Bologna, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Pharmacy and Biotechnology - FaBiT, University of Bologna, Bologna</wicri:regionArea>
<wicri:noRegion>Bologna</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Trost, Paolo" sort="Trost, Paolo" uniqKey="Trost P" first="Paolo" last="Trost">Paolo Trost</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Pharmacy and Biotechnology - FaBiT, University of Bologna, Bologna, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Pharmacy and Biotechnology - FaBiT, University of Bologna, Bologna</wicri:regionArea>
<wicri:noRegion>Bologna</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Blennow, Andreas" sort="Blennow, Andreas" uniqKey="Blennow A" first="Andreas" last="Blennow">Andreas Blennow</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark.</nlm:affiliation>
<country xml:lang="fr">Danemark</country>
<wicri:regionArea>Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg</wicri:regionArea>
<wicri:noRegion>Frederiksberg</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30298078</idno>
<idno type="pmid">30298078</idno>
<idno type="doi">10.3389/fpls.2018.01344</idno>
<idno type="pmc">PMC6160744</idno>
<idno type="wicri:Area/Main/Corpus">000209</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000209</idno>
<idno type="wicri:Area/Main/Curation">000209</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000209</idno>
<idno type="wicri:Area/Main/Exploration">000209</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Redox Regulation of Starch Metabolism.</title>
<author>
<name sortKey="Skryhan, Katsiaryna" sort="Skryhan, Katsiaryna" uniqKey="Skryhan K" first="Katsiaryna" last="Skryhan">Katsiaryna Skryhan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark.</nlm:affiliation>
<country xml:lang="fr">Danemark</country>
<wicri:regionArea>Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg</wicri:regionArea>
<wicri:noRegion>Frederiksberg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gurrieri, Libero" sort="Gurrieri, Libero" uniqKey="Gurrieri L" first="Libero" last="Gurrieri">Libero Gurrieri</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Pharmacy and Biotechnology - FaBiT, University of Bologna, Bologna, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Pharmacy and Biotechnology - FaBiT, University of Bologna, Bologna</wicri:regionArea>
<wicri:noRegion>Bologna</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sparla, Francesca" sort="Sparla, Francesca" uniqKey="Sparla F" first="Francesca" last="Sparla">Francesca Sparla</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Pharmacy and Biotechnology - FaBiT, University of Bologna, Bologna, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Pharmacy and Biotechnology - FaBiT, University of Bologna, Bologna</wicri:regionArea>
<wicri:noRegion>Bologna</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Trost, Paolo" sort="Trost, Paolo" uniqKey="Trost P" first="Paolo" last="Trost">Paolo Trost</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Pharmacy and Biotechnology - FaBiT, University of Bologna, Bologna, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Pharmacy and Biotechnology - FaBiT, University of Bologna, Bologna</wicri:regionArea>
<wicri:noRegion>Bologna</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Blennow, Andreas" sort="Blennow, Andreas" uniqKey="Blennow A" first="Andreas" last="Blennow">Andreas Blennow</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark.</nlm:affiliation>
<country xml:lang="fr">Danemark</country>
<wicri:regionArea>Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg</wicri:regionArea>
<wicri:noRegion>Frederiksberg</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Metabolism of starch is a major biological integrator of plant growth supporting nocturnal energy dynamics by transitory starch degradation as well as periods of dormancy, re-growth, and reproduction by utilization of storage starch. Especially, the extraordinarily well-tuned and coordinated rate of transient starch biosynthesis and degradation suggests the presence of very sophisticated regulatory mechanisms. Together with the circadian clock, land plants (being autotrophic and sessile organisms) need to monitor, sense, and recognize the photosynthetic rate, soil mineral availability as well as various abiotic and biotic stress factors. Currently it is widely accepted that post-translational modifications are the main way by which the diel periodic activity of enzymes of transient starch metabolism are regulated. Among these mechanisms, thiol-based redox regulation is suggested to be of fundamental importance and in chloroplasts, thioredoxins (Trx) are tightly linked up to photosynthesis and mediate light/dark regulation of metabolism. Also, light independent NADP-thioredoxin reductase C (NTRC) plays a major role in reactive oxygen species scavenging. Moreover, Trx and NTRC systems are interconnected at several levels and strongly influence each other. Most enzymes involved in starch metabolism are demonstrated to be redox-sensitive
<i>in vitro</i>
. However, to what extent their redox sensitivity is physiologically relevant in synchronizing starch metabolism with photosynthesis, heterotrophic energy demands, and oxidative protection is still unclear. For example, many hydrolases are activated under reducing (light) conditions and the strict separation between light and dark metabolic pathways is now challenged by data suggesting degradation of starch during the light period.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">30298078</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>9</Volume>
<PubDate>
<Year>2018</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Redox Regulation of Starch Metabolism.</ArticleTitle>
<Pagination>
<MedlinePgn>1344</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2018.01344</ELocationID>
<Abstract>
<AbstractText>Metabolism of starch is a major biological integrator of plant growth supporting nocturnal energy dynamics by transitory starch degradation as well as periods of dormancy, re-growth, and reproduction by utilization of storage starch. Especially, the extraordinarily well-tuned and coordinated rate of transient starch biosynthesis and degradation suggests the presence of very sophisticated regulatory mechanisms. Together with the circadian clock, land plants (being autotrophic and sessile organisms) need to monitor, sense, and recognize the photosynthetic rate, soil mineral availability as well as various abiotic and biotic stress factors. Currently it is widely accepted that post-translational modifications are the main way by which the diel periodic activity of enzymes of transient starch metabolism are regulated. Among these mechanisms, thiol-based redox regulation is suggested to be of fundamental importance and in chloroplasts, thioredoxins (Trx) are tightly linked up to photosynthesis and mediate light/dark regulation of metabolism. Also, light independent NADP-thioredoxin reductase C (NTRC) plays a major role in reactive oxygen species scavenging. Moreover, Trx and NTRC systems are interconnected at several levels and strongly influence each other. Most enzymes involved in starch metabolism are demonstrated to be redox-sensitive
<i>in vitro</i>
. However, to what extent their redox sensitivity is physiologically relevant in synchronizing starch metabolism with photosynthesis, heterotrophic energy demands, and oxidative protection is still unclear. For example, many hydrolases are activated under reducing (light) conditions and the strict separation between light and dark metabolic pathways is now challenged by data suggesting degradation of starch during the light period.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Skryhan</LastName>
<ForeName>Katsiaryna</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gurrieri</LastName>
<ForeName>Libero</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Department of Pharmacy and Biotechnology - FaBiT, University of Bologna, Bologna, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sparla</LastName>
<ForeName>Francesca</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Department of Pharmacy and Biotechnology - FaBiT, University of Bologna, Bologna, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Trost</LastName>
<ForeName>Paolo</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Department of Pharmacy and Biotechnology - FaBiT, University of Bologna, Bologna, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Blennow</LastName>
<ForeName>Andreas</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>09</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">NTRC</Keyword>
<Keyword MajorTopicYN="N">diurnal regulation</Keyword>
<Keyword MajorTopicYN="N">redox regulation</Keyword>
<Keyword MajorTopicYN="N">starch</Keyword>
<Keyword MajorTopicYN="N">thioredoxins</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>06</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>08</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>10</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>10</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>10</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30298078</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2018.01344</ArticleId>
<ArticleId IdType="pmc">PMC6160744</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Cell. 2016 Aug;28(8):1860-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27436713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Jan;21(1):334-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19141707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2013 Jan;36(1):16-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22646759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1988 Apr;86(4):1131-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16666044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Aug 2;102(31):11118-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16046541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 Apr 29;165(2):866-879</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24781197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2010;61:209-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20192737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2015;66:75-111</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25580835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2013 Jun;11(5):618-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23398733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2017 Aug;160(4):447-457</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28303594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2016 Mar;67(6):1951-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26842981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2015 Jun;25:1-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25899330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Jul;141(3):840-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16698902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2017 Aug 7;10(8):1107-1125</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28739495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 Oct 08;4:389</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24115951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1998 Jan;13(1):63-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9680965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2018 Oct;16(10):1723-1734</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29499105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Sep 14;10(9):e0136997</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26367870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2016 Aug;39(8):1691-705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26831830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2012 Apr;70(2):231-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22098298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2017 Jul 20;68(16):4433-4453</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28981786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2010 Jun;13(3):321-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20171927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1988 Dec;88(4):1175-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16666440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Apr;155(4):1566-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21378102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Feb 1;102(5):1785-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15665090</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Jan 14;275(2):1315-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10625679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2012 Aug 31;586(18):2974-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22796111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2010 Apr;15(4):236-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20149714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2015 Dec;84(5):900-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26468055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2016 Jul;73(14):2753-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27147464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2015 Sep;66(19):6059-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26139825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Jul;141(3):879-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16698896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2017 Aug;174(4):2199-2212</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28663333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2006 Sep;89(2-3):179-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17031546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 Dec;172(4):2388-2402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27794100</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2001 Aug;13(8):1907-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11487701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2012 Jun;15(3):282-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22541711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 Apr 29;4:105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23641245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 May 18;107(20):9458-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20439704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2015 Apr;32:143-148</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25559079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2017 Feb 2;12(2):e0171245</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28152100</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 May 14;99(10):7166-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12011472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2009 Mar;2(2):259-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19825612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1991 Dec;97(4):1565-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2016 Jul;73(14):2781-807</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27166931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2016 Jun;28(6):1472-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27207856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Jan 2;303(5654):87-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14704427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Aug;138(4):2280-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16055686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2017 May;214(3):943-951</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28277621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1997 May;11(5):1121-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9193079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2012 Sep;58:89-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22789914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2017 Apr 1;68(9):2285-2298</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28430985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Nov 22;288(47):33620-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24089528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2013 Jan;280(2):538-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22372537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2017 Jul;174(3):1436-1448</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28500266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Oct;133(2):838-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12972664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2014 Aug;55(8):1415-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24850837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2017 Apr 4;474(8):1347-1360</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28246333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Aug 31;101(35):13080-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15326306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Apr;20(4):1040-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18390594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Jun 16;106(24):9908-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19470473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2007 Sep;30(9):1126-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17661751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Nov 7;114(45):12069-12074</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29078290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2014 Sep 20;21(9):1389-421</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24960279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2016 Mar;67(6):1819-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26792489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Jan;62(2):545-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20876336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 Nov 25;4:470</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24324475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Sep 25;273(39):25045-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9737961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Jan 25;283(4):1831-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17947231</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Danemark</li>
<li>Italie</li>
</country>
</list>
<tree>
<country name="Danemark">
<noRegion>
<name sortKey="Skryhan, Katsiaryna" sort="Skryhan, Katsiaryna" uniqKey="Skryhan K" first="Katsiaryna" last="Skryhan">Katsiaryna Skryhan</name>
</noRegion>
<name sortKey="Blennow, Andreas" sort="Blennow, Andreas" uniqKey="Blennow A" first="Andreas" last="Blennow">Andreas Blennow</name>
</country>
<country name="Italie">
<noRegion>
<name sortKey="Gurrieri, Libero" sort="Gurrieri, Libero" uniqKey="Gurrieri L" first="Libero" last="Gurrieri">Libero Gurrieri</name>
</noRegion>
<name sortKey="Sparla, Francesca" sort="Sparla, Francesca" uniqKey="Sparla F" first="Francesca" last="Sparla">Francesca Sparla</name>
<name sortKey="Trost, Paolo" sort="Trost, Paolo" uniqKey="Trost P" first="Paolo" last="Trost">Paolo Trost</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/ChloroPlantRedoxV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000218 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000218 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    ChloroPlantRedoxV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30298078
   |texte=   Redox Regulation of Starch Metabolism.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30298078" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a ChloroPlantRedoxV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 12:07:36 2020. Site generation: Sat Nov 21 12:08:05 2020